

Handouts for lectures on:

Introduction to Semantics

Prof. Timothy Williamson and Dr. Ofra Magidor

Trinity Term 2008

Introduction to Semantics, TT08, Timothy Williamson and Ofra Magidor

1

Introduction to Semantics
Week 1

I. The general framework
We will explore semantic theories which are:
 compositional
 truth-conditional
 model-theoretic
 type-theoretic (and type driven?)
 the input for semantic interpretation is provided by syntax (via binary phrase-

structure

II. Some preliminaries: functions and sets
functions
 An n-place relation is a set of n-tuples. A function is a two-place relation R over a

set D, such that for every aD, if <a,b> and <a,c>R, then b=c.
 If f is a function, and <a,b>f then the expression ‘f(a)’ denotes b.
 For each function we may specify the domain of the function. As we defined

functions above the domain is simply defined as {x: there is a y such that
<x,y>f}. But sometimes we will prefer to specify a domain D independently, and
define a function f to be total if and only if for every xD there is a y, such that
<x,y>f and partial if this is not the case.

 We can also specify a set to be the range of a function. The only constraint on the
range is that {y: there is an x such that <x,y>f} will be a subset of the range.

 We use the notation f: AB to note that f is function where A is its domain, and B
is its range.

 Given two sets A and B, the notations BA and [AB] are both used to denote the
set of all functions whose domain is A and whose range is B.

characteristic sets and functions
 Given a function f with the range {T,F} (truth-values) we define its characteristic

set to be {d: f(d)=T}.
 Given a domain D and a set SD we define its characteristic function to be the

function f with the domain D, such that for each dD, f(d)=T if dS, and f(d)=F,
if dS.

schönfinkelization
 For any n-place function we can find a one-place function that is basically

equivalent to it. Suppose we have a two-place function f: AxBC. We can define
a one-place function f*: A[BC] as follows: For each aA, f*(a) = ga. So that
for each bB, ga(b)=f(a,b). This means that for every aA and bB,
f(a,b)=(f*(a))(b).

Introduction to Semantics, TT08, Timothy Williamson and Ofra Magidor

2

III. The logic
typed propositional calculus
types:
(i) t is a type.
(ii) if a and b are types then <a,b> is type.

expressions:
Name for expression Notation Type of expression

Propositional letters P, Q, R t
Negation sign ~ <t,t>
Disjunction <t,<t,t>>

Conjunction <t,<t,t>>

If φ is an expression of type <a,b> and ψ is an expression of type a then φ(ψ) is a
well-formed expression of type b.

semantics:
 For each type a we assign a domain Da.
 The domain of type t is Dt = {T,F}. The domain of types <a,b> is [DaDb]. (I.e.

functions from the domain of type a to the domain of type b).
 An interpretation is a function I such that for each expression α of type a, I(α)Da.
 The interpretations of ~, , and are fixed to the usual truth-functions (after

schönfinkelization).
 The interpretation of any formula of the form φ(ψ) is I(φ)(I(ψ)).
 This means that once we fix the interpretations of the propositional letters the

truth-value of any formula is determined.

typed predicate calculus
types:

(i) t is a type.
(ii) e is a type
(iii) if a and b are types then <a,b> is type.

Expressions:
 All the expressions of propositional calculus
 For each type a we have an infinite set of constants of type a.
 For each type a we have an infinite set of variables of type a.
 The quantifier symbols , (untyped)
 The identity symbol = (untyped).
 If φ is an expression of type <a,b> and ψ is an expression of type a then φ(ψ) is a

well-formed expression of type b.
 For every expression φ of type t, and any variable (of any type) x, xφ and xφ

are well-formed expression of type t.
 For every two expressions φ and ψ of type a, φ=ψ is a well-formed expression of

type a.

Introduction to Semantics, TT08, Timothy Williamson and Ofra Magidor

3

semantics:
 For each type a we assign a domain Da.
 The domain of type t is Dt = {T,F}. The domain of type e is the set of individuals

De. For any types a and b the domain of type <a,b> is [DaDb]. (I.e. functions
from the domain of type a to the domain of type b).

 An assignment function is a function g such that for each variable x of type a, g(x)
Da.

 The interpretation function I is a function such that for each constant c of type a
I(c)Da.

 The interpretations of ~, , and are fixed to the usual truth-functions (after
schönfinkelization).

For each expression α we define its semantic-value relative to an interpretation
function I and an assignment function g (denoted by [α]I, g) as follows:
 If α is a constant then [α]I, g = I(α)
 If α is a variable then [α]I, g = g(α)
 If α is of the form φ(ψ) then [α]I, g = [φ]I, g([ψ]I, g)
 If α is of the form [φ=ψ] then [α]I, g = T if [φ]I, g= [ψ]I, g, and [α]I, g = F otherwise.
 If α is of the form xφ then [α]I, g = T if for every assignment g* differing from g

at most in its assignment to x, [φ]I, g* = T, otherwise [α]I, g = F.
 If α is of the form xφ then [α]I, g = T if for some assignment g* differing from g

at most in its assignment to x, [φ]I, g* = T, otherwise [α]I, g = F.
 Note that as usual the semantic-values (i.e. truth-values) of sentences with no free

variable do not depend on the assignment function.

IV. Natural language semantics
Lexical items (some tentative suggestions):
 Proper names (‘Joe’, ‘London’): type e.
 Common nouns (‘cat’); adjectives (‘red’); non-transitive verbs (‘is eating’): type

<e,t>.
 Second order properties (‘is a colour’, ‘is a desirable property to have’): type

<<e,t>,t>
 Transitive verbs (‘loves’): type <e,<e,t>>
 Adverbs (‘quickly’, ‘very’): type <<e,t>,<e,t>>
 Prepositions (‘in’, ‘on’, ‘with’): <e,<<e,t>,<e,t>>
 Sentential connectives (‘and’): <t,t>
 Quantifiers (‘every’): <<e,t>,<<e,t>,t>>

Stage 1: translations to typed-predicate logic
 Each lexical item is assigned an expression of the relevant type.
 Complex expressions are built out of simpler by following the phrase-structures.

Stage 2: semantic values
 The interpretation function I (which interprets the constants) is determined by the

lexicon. (E.g. ‘eats’ is assigned the function f: f(x)=T if x eats, and f(x)=F
otherwise).

Introduction to Semantics, TT08, Timothy Williamson and Ofra Magidor

4

 All other expressions receive their semantic-values compositionally as described
above.

Q: but isn’t this too extensional to count as a serious semantic theory?
 A1: complicate the semantics by adding possible worlds
 A2: complicate the semantic in some other way (?)
 A3: adopt a more intentional understanding of model specifications.
 A4: specify meanings via trees and not only “roots”.
 A5: This is what linguists do .

IV. Lambda abstraction
Extending typed-predicate calculus
Extending the language:
 If φ is an expression of type b and x is a variable of type a, then λx.φ is an

expression of type <a, b>
Extending the semantics:
 If α is of the form λx.φ, where x is a variable of type a and φ an expression of type

b then [α]I, g is the function f: DaDb which is defined as follows. Let every aDa,
ga is an assignment just like g except that ga(x)=a. Then f(a) = [φ]I, ga

λ-conversion (also called ‘Beta conversion’):
 An expression of the form λx.φ(ψ) can be converted or reduced to φ with every

occurrence of x replaced with ψ (provided some restrictions are met.- see e.g.
Gamut, p.110).

Some applications of the extension:
 Given that loves is an expression of type <e,<e,t>>, we can give a derived

semantic value for loves John of type <e,t>: λx.(loves(x)(John)) (or in a slightly
nicer notation: λx.x loves John)

 We can define loves himself (λx.x loves x).
 We can interpret sentences such as ‘Drinking and driving is unwise’.

Further Readings
 Carpenter, R., Type-Logical Semantics, MIT Press (1997).
 Gamut, L.T.F., Logic, Language, and Meanings (vol.2), Chicago University Press

(1991) (for current lecture: chapter 4)
 Heim, I. and Kratzer, A., Semantics in Generative Grammar, Oxford (1998). (for

current lecture: chapters 1-3)
 Lewis, D., ‘General Semantics’, Synthese 22 (1970), pp. 18-67.
 Montague, R., ‘The proper treatment of quantification in ordinary English’, in his

Formal Philosophy, Yale University Press (1974). [A seminal paper, though not
for the faint hearted].

 Potts, C., Logic for Linguists http://udrive.oit.umass.edu/potts/web/lsa07/lsa108P/
[probably the most accessible of all these sources, and also contains problem sets
with solutions]

Introduction to Semantics

Week 5: Quantifiers

Standard (unary) quantifiers by lambda abstraction

Syntax

If φ is an expression of type b and v is a variable of type a, then λv.φ is an expression of
type <a, b>.

For any type a, if α is an expression of type <a, t>, ∀ α and ∃ α are expressions of type t.

Thus instead of (x) Fx and (x) Fx we have ∀ ∃ ∀ λx.Fx and ∃ λx.Fx.

Also, if P is a constant or variable of type <a, t> then ∀ P and ∃ P are expressions of type
t (NB they do not contain a variable of type a).

Semantics

Notation: If g is an assignment, v is a variable of type a and a∈Da, then g[v/a] is the
assignment g* such that g*(v) = a and for any variable u other than v, g*(u) = g(u).
If X is a set, |X| is the number of members of X.

Let I be any interpretation and g any assignment.

If φ is an expression of type b and v is a variable of type a, then [λv.φ]I,g is the function f:
Da → Db such that for a Da, f(a) = [φ]I,g[v/a]. ∈

If α is an expression of type <a, t>, [∀ α]I,g = T iff |{a∈Da: [α]I,g(a) ≠ T}| = 0.

If α is an expression of type <a, t>, [∃ α]I,g = T iff |{a∈Da: [α]I,g(a) = T}| > 0.

(We are assuming that all expressions have semantic values, so if φ is of type t then [φ] =
F unless [φ] = T.)

Extensions

Where ∃ ≤n is the quantifier “at most n” (with the same syntax as ∀ and): ∃
if α is an expression of type <a, t>, [∃ ≤n α]I,g = T iff |{a∈Da: [α]I,g(a) = T}| ≤ n.
Similarly for “at least n” and “exactly n” etc.

If β is an expression of type e, Qβ is an expression of type <<e, t>, t> and for any
expression α of type <e, t>, [Qβ(α)]I,g = [α]I,g([β]I,g).

 1

Limitations of the unary analysis for natural languages

Standard symbolizations:
All As are Bs λx.(Ax → Bx) ∀
Some As are Bs λx.(Ax & Bx) ∃
At most n As are B ≤n λx.(Ax & Bx) etc. ∃
These secure the right truth-values and entailments, but look rather artifical — is there
really a conditional hidden in “All As are Bs” and a conjunction in “Some As are Bs”?

For other quantifiers, the problem is worse. Consider “most”. For simplicity, assume that
“Most As are Bs” is true iff more As are Bs than are non-Bs.
Can we represent “Most As are Bs” as M λx.(Ax * Bx), where for expressions φ, ψ of
type t, [φ * ψ]I,g = [φ]I,g * [ψ]I,g and for expressions α of type <e, t>, [M α]I,g = M([α]I,g)
for suitable functions * and M (* will take pairs of truth-values to truth-values and M
will take functions from individuals to truth-values to truth-values)?
NB For simplicity, binary connectives such as * have not been schönfinkelized.

We can represent “Most things are A and B” and “Most things are A only if B” [material
conditional] in that way, but neither is equivalent to “Most As are Bs”:
If 90% of individuals are neither A nor B, 9% are A and B and 1% are A but not B,
“Most As are Bs” is true while “Most things are A and B” is false.
If 90% of individuals are neither A nor B, 1% are A and B and 9% are A but not B,
“Most As are Bs” is false while “Most things are A only if B” is true.

A proof that there can be no such functions as M and *:
Suppose for reductio that there are. Since T*T, T*F and F*T are all in {T, F}, at least one
of the following must hold: (i) T*T = T*F; (ii) T*T = F*T; (iii) T*F = F*T. We show that
each case is impossible. Consider an interpretation I on which all individuals are in the
extension of A, and 90% are in the extension of B.

(i) For any assignment g, [Ax*Bx]I,g = [Ax]I,g*[Bx]I,g = T*[Bx]I,g = T*[¬Bx]I,g =
[Ax]I,g*[¬Bx]I,g = [Ax*¬Bx]I,g. Hence [λx.(Ax*Bx)]I,g = [λx.(Ax*¬Bx)]I,g.
Thus [M λx.(Ax*Bx)]I,g = [M λx.(Ax*¬Bx)]I,g. But most things that satisfy Ax satisfy Bx
while it is not the case that most things that satisfy Ax satisfy ¬Bx.

(ii) For any assignment g, either [Bx]I,g = F, in which case [Ax*Bx]I,g = T*F =
[¬Bx*Bx]I,g, or [Bx]I,g = T, in which case [Ax*Bx]I,g = T*T = F*T = [¬Bx*Bx]I,g.
Reasoning as in (i), [M λx.(Ax*Bx)]I,g = [M λx.(¬Bx*Bx)]I,g. But most things that satisfy
Ax satisfy Bx while it is not the case that most things that satisfy ¬Bx satisfy Bx.

(iii) For any assignment g, either [Bx]I,g = F, in which case [Ax*¬Bx]I,g = T*T =
[¬Bx*Ax]I,g, or [Bx]I,g = T, in which case [Ax*¬Bx]I,g = T*F = F*T = [¬Bx*Ax]I,g.
Reasoning as in (i), [M λx.(Ax*¬Bx)]I,g = [M λx.(¬Bx*Ax)]I,g. But most things that
satisfy ¬Bx satisfy Ax while it is not the case that most things that satisfy Ax satisfy ¬Bx.

 2

A solution

To solve the problem, let us treat MOST as an untyped expression such that for any type
a, if α is an expression of type <a, t> then (MOST α) is an expression of type <<a, t>, t>,
and for any expression β of type <a, t>:
[(MOST α)(β)]I,g = T iff

|{a Da: [α]I,g(a) = [β]I,g(a) = T}| > |{a∈ ∈Da: [α]I,g(a) = T ≠ [β]I,g}|.

We can apply a parallel treatment to ALL, SOME, NO etc., giving them the same syntax
as MOST and the following semantic clauses:

[(ALL α)(β)]I,g = T iff |{a∈Da: [α]I,g(a) = T ≠ [β]I,g}| = 0.

[(SOME α)(β)]I,g = T iff |{a Da: [α]I,g(a) = [β]I,g(a) = T}| > 0. ∈

[(NO α)(β)]I,g = T iff |{a Da: [α]I,g(a) = [β]I,g(a) = T}| = 0. ∈

Expressions such as “all”, “some”, “no”, “at least seven”, “exactly seven”, “at most
seven” and “most” are determiners. In natural languages, there is typically an asymmetry
between the grammatical categories of the expressions occupying the α and β positions in
(DET α)(β): α occupies noun position while β occupies verb phrase position. Our
analysis ignored this asymmetry, whose significance is unclear.

Note that the constituent structure of (DET α)(β) seems to match that of the
corresponding English sentences much better than did that of the original unary analyses.
For example, in “Some dogs bark”, the first two words seem to constitute a unit as in
(SOME λx.(dog(x)))(λx.(bark(x))) but not ∃ x (dog(x) & bark(x)).

If we fix the type a, then we can assign types and semantic values to determiners. For
example, if we put a = e, then SOME is of type <<e, t>, <<e, t>, t>>, and [SOME]I,g is
the function F: D<e, t> → D<<e, t>, t> such that if g and h are both functions: De → Dt, then
F(g)(h) = T iff |{i De: g(i) = T = h(i)}| > 0. This gives a ‘language independent’
characterization of the semantic value. Likewise for the other determiners. A more
intuitive way of conceiving the semantic values of determiners is as relations between
sets, e.g. in the case of SOME the relation of having a non-empty intersection.

∈

 3

Conservativeness

Determiners like ALL, SOME, NO and MOST all satisfy the following constraint,
where if α and β are both of category a so is α & β and [α & β]I,g = T iff [α]I,g = [β]I,g =
T:

Conservativeness [(DET α)(β)]I,g = [(DET α)(α & β)]I,g

For example, “All squares are red” is equivalent to “All squares are red squares”, “Some
squares are red” to “Some squares are red squares”, “No squares are red” to “No squares
are red squares” and “Most squares are red” to “Most squares are red squares”.

Any determiner DET will be conservative in this sense provided that [(DET α)(β)]I,g is a
function of {a∈Da: [α]I,g(a) = [β]I,g(a) = T} and {a∈Da: [α]I,g(a) = T ≠ [β]I,g}. For we
always have {a∈Da: [α]I,g(a) = T = [β]I,g} = {a∈Da: [α]I,g(a) = T = [α & β]I,g} and
{a∈Da: [α]I,g(a) = T ≠ [β]I,g} = {a∈Da: [α]I,g(a) = T ≠ [α & β]I,g}.

It has been conjectured as a linguistic universal that all determiners in natural language
are conservative. If we treat “only” as a determiner, it will be a counterexample, since
“Only squares are red” is false but “Only squares are red squares” is true. However, the
variety of positions in which “only” can occur suggest that it is an adverb rather than a
determiner (e.g. try substituting “all”, “some” or “most” for “only” in “I only skimmed
the newspaper”).

Further reading

Jon Barwise and Robin Cooper, ‘Generalized quantifiers and natural language’,
Linguistics and Philosophy 4 (1981): 159-219.
Irene Heim and Angelika Kratzer, Semantics in Generative Grammar (Oxford,
Blackwell, 1998), ch. 6.
Stanley Peters and Dag Westerståhl, Quantifiers in Language and Logic (Oxford,
Clarendon Press, 2006).

 4

Introduction to Semantics

Week 6: Definite Descriptions

Definite descriptions are expressions such as ‘the man who broke the bank at Monte
Carlo’, ‘my book’, … and their equivalents in other languages. In present terms, they
result from combining an expression such as ‘the’ or ‘my’ with an expression of type
<e, t> (‘man who broke the bank at Monte Carlo’, ‘book’) and in turn combine with an
expression of type <e, t> (‘is lost’) to give a sentence [NB for simplicity, we continue to
ignore the difference between nouns and predicates.] But this leaves it open whether they
are of type <<e, t>, t> (quantifiers) or of type e (singular terms), depending on whether
e.g. ‘my book’ supplies the function or its argument in ‘My book is lost’.

Definite descriptions as quantifiers

For simplicity, we impose typing on determiners (unlike last week).
Treat DET {ALL, SOME, NO, MOST, ...} as of type <<e, t>, <<e, t>, t>>. ∈

Similarly, we can treat THE as a determiner. Thus if α and β are expressions of type
<e, t>, THE α is of type <<e, t>, t> (a quantifier) and (THE α)(β) is of type t.

Semantics:

For any interpretation I and assignment g,
[SOME]I,g is the function f: D<e,t> → D<<e,t>, t> such that for any functions g, h: De → Dt,
f(g)(h) = T iff |{a De: g(a) = h(a) = T}| > 0; ∈
f(g)(h) = F iff |{a∈De: g(a) = h(a) = T}| = 0.

Now since [(SOME α)(β)]I,g = [SOME]I,g([α]I,g)([β]I,g,
[(SOME α)(β)]I,g = T iff |{a Da: [α]I,g(a) = [β]I,g(a) = T}| > 0; ∈
[(SOME α)(β)]I,g = F iff |{a∈Da: [α]I,g(a) = [β]I,g(a) = T}| = 0.

Similarly:
[THE]I,g is the function f: D<e,t> → D<<e,t>t> such that for any functions g, h : De → Dt,
f(g)(h) = T iff |{a De: g(a) = h(a) = T}| = 1 and |{a∈ ∈De: g(a) = T, h(a) = F}| = 0;
f(g)(h) = F iff |{a∈De: g(a) = h(a) = T}| ≠ 1 or |{a∈De: g(a) = T, h(a) = F}| ≠ 0.

Now since [(THE α)(β)]I,g = [THE]I,g([α]I,g)([β]I,g),
[(THE α)(β)]I,g = T iff |{a De: [α]I,g(a) = [β]I,g(a) = T}| = 1 and ∈

|{a∈Da: [α]I,g(a) = T, [β]I,g(a) = F}| = 0;
[(THE α)(β)]I,g = F iff |{a∈De: [α]I,g(a) = [β]I,g(a) = T}| ≠ 1 or
 |{a∈Da: [α]I,g(a) = T, [β]I,g(a) = F}| ≠ 0.

 1

NB These are exactly the same truth and falsity conditions as Russell’s theory assigns,
but without the analysis of THE in terms of ∃ and ∀ . Unlike Russell’s theory, this
treatment preserves THE α as a semantically significant constituent.

Normally, definite descriptions will be interpreted with respect to a contextually
restricted domain of individuals De, so the uniqueness requirement is not as demanding as
it sounds.

How should the quantifier account be extended to plural definite descriptions, as in

(1) The peasants are revolting.

which can be true (only?) if there is more than one peasant.
Could we get the right result by treating ‘peasants’ as of a different (plural?) type from
‘peasant’?

Definite descriptions as singular terms

In mathematics, functional expressions such as ‘+’ and ‘√’ seem to form singular terms;
thus ‘5 + 7’ and ‘√144’ seem to occupy the same grammatical position as ‘12’. But
expressions such as ‘5 + 7’ and ‘√144’ correspond to definite descriptions such as ‘the
sum of five and seven’ and ‘the (positive) square root of a hundred and forty four’. This
suggests treating definite descriptions as complex singular terms. Thus we treat ‘the’ as
of type <<e, t>, e>. One might be attracted by an analogous treatment of complex
demonstratives such as ‘this man’.

Semantics

For any interpretation I and assignment g,
[THE]I,g is the partial function f: D<e,t> → De such that for any function g: De → Dt,
if |{a De: g(a) = T}| = 1 then f(g)∈ ∈De and g(f(g)) = T;
if |{a De: g(a) = T}| ≠ 1 then f(g) is undefined. ∈

Now since [β(THE α)]I,g = [β]I,g([THE]I,g([α]I,g)),
[β(THE α)]I,g = T iff |{a De: [α]I,g(a) = [β]I,g(a) = T}| = 1 and ∈

|{a∈Da: [α]I,g(a) = T, [β]I,g(a) = F}| = 0;
[β(THE α)]I,g = F iff |{a∈De: [α]I,g(a) = [β]I,g(a) = T}| = 0 and
 |{a∈Da: [α]I,g(a) = T, [β]I,g(a) = F}| = 1;
[β(THE α)]I,g is undefined iff |{a∈De: [α]I,g(a) = T}| ≠ 1.

[Similar issues to those for the previous treatment arise about plural definite descriptions,
as in (1) above.]

NB This is similar to Strawson’s treatment of definite descriptions. The truth value gaps
are not imposed to respect native speaker intuitions that e.g. the question of whether ‘The

 2

king of France is bald’ is true or false ‘does not arise’. Rather, it is the natural outcome of
treating definite descriptions as of type e and computing semantic values by functional
application: without an argument, a function cannot deliver a value. However, this
treatment does not imply that sentences with definite descriptions can in effect express
only singular propositions, for it allows binding into them, as in

(2) Every woman respects her mother.

(3) The capital of every country is a large city.

Contrast:

(4)* This capital of every country is a large city.

If a necessary condition for sentence φ to have a truth value is that sentence ψ is true, we
may say that φ presupposes ψ, in a Strawsonian rather than Stalnakerian sense
(Stalnaker’s pragmatic presuppositions concern what speakers take as common ground in
a conversation and do not involve truth value gaps). On this view, ‘The coin in my pocket
is shiny’ presupposes ‘There is exactly one coin in my pocket’.

Problems:

In at least some cases where this treatment implies presupposition failure and a truth
value gap, we seem instead to have straightforward falsity:

(5) The master of the universe is present in this very room.

(6) I am the master of the universe.

Heim and Kratzer (p. 77) suggest that we can handle this problem by treating the ordinary
term ‘false’ as applicable both to cases in which the semantics assigns F to a sentence and
to cases in which the semantics leaves the sentence without a semantic value. This is
unsatisfying for several reasons. One is that it does not explain what ‘F’ means in the
semantics — presumably not falsity, otherwise the semantics would be incorrectly
rejecting the claim that the sentence is false in cases of presupposition failure. Moreover,
if the semantic values of all complex expressions are determined compositionally by
functional application, as the paradigm requires, then the negations of (5) and (6) will
also lack semantic values:

(7) The master of the universe is not present in this very room.

(8) I am not the master of the universe.

Thus if receiving no semantic value is a way of being false, then presumably (7) and (8)
should count as false. But neither seems false, and at least (8) seems straightforwardly
true.

 3

One alternative is to depart from the strict functional application paradigm. For example,
one might rule that the negation of something with no truth value is to be true, so that (7)
and (8) would come out true. That strategy will require all sorts of further rulings, e.g. to
handle:

(9) Anyone who is the master of the universe is very powerful.

Moreover, if one departs from the strict functional application paradigm, one can simply
assign F to (5) and (6) by the stipulation:

[β(THE α)]I,g = F if |{a∈De: [α]I,g(a) = T}| ≠ 1.

The effect of this is to assign the same truth values to these sentences as under the
quantifier treatment, and the Strawsonian presupposition failures disappear.

Another possibility is to give a different semantic treatment to occurrences of definite
descriptions in predicate position, as in (6), (8) and (9), although this is unattractively
disunified and does not deal with the problem that (7) is not false.

Even if definite descriptions in natural languages are quantifiers, the problem remains of
functional expressions in mathematical language. More generally, could there be a
language with complex singular terms whose semantics is Strawsonian? What sort of
propositions would they express?

Further reading:
Irene Heim and Angelika Kratzer, Semantics in Generative Grammar (Oxford:
Blackwell, 1998), pp. 73-83.
Gary Ostertag, ed., Definite Descriptions: A Reader (Cambridge, Mass.: MIT Press,
1998).

 4

Introduction to Semantics

Week 7: Adverbial Modifications

In what follows, grossly over-simplify by ignoring matters of tense, even though they are
relevant to the problems at issue; things are difficult enough without them, and they can
be factored back in later.

We are interested in the relation between (1) and (2):

(1) Mary walked.

(2) Mary walked quickly.

We don’t want just to represent them as

(1a) Walked(Mary).

(2a) Walkedquickly(Mary).

where ‘Walkedquickly is atomic, since this omits the overt semantic relationship between
(1a) and (2a) and leads to an unacceptable proliferation of primitives when extended to
other adverbial modifications, as in:

(3) Mary walked quickly home from school by the river with her books while talking

to her friends.

Nor can we treat ‘quickly’ in (2) as predicated of Mary:

(2b) Walked(Mary) & Quick(Mary).

For, although (2b) would help to capture the entailment relations between (1) and (2), by
the same procedure we would have to formalize (4) and (5) as (4b) and (5b) respectively:

(4) Mary walked quickly and talked slowly.

(5) Mary walked slowly and talked quickly.

(4b) Walked(Mary) & Quick(Mary) & Talked(Mary) & Slow(Mary)

(5b) Walked(Mary) & Slow(Mary) & Talked(Mary) & Quick(Mary)

For not only do (4b) and (5b) seem to be individually inconsistent, they are logically
equivalent to each other — unlike (4) and (5).

 1

Flat-footed application of type theory: the predicate modifier approach

Treat walked as of type <e, t> and quickly as of type <<e, t>, <e, t>>, so that for any
expression α of type <e, t>, α quickly (e.g. walked quickly) — thought of as quickly(α)
(e.g. quickly(walked)) is also of type <e, t>. Thus the difference between (4) and (5)
would be represented as:

(4c) (quickly(walked))(Mary) & (slowly(talked))(Mary)

(5c) (slowly(walked))(Mary) & (quickly(talked))(Mary)

Semantics: for any interpretation I and assignment g, [quickly]I,g is a function f: D<e,t> →
D<e,t>. Roughly speaking, for any action A, if the function h: De → Dt maps all and only
the individuals in De who do A to truth, then f(h): De → Dt maps all and only the
individuals in De who do A quickly to truth.

This account can be generalized to more complex examples, such as (3). A less complex
case is:

(6) Mary walked quickly to Oxford.

We want to treat to Oxford on a par with quickly, as of type <<e, t>, <e, t>>. Since
Oxford is of type e, we treat to as of type <e, <<e, t>, <e, t>>>. Thus (6) is represented
as:

(6c) ((to(Oxford))((quickly(walked))))(Mary)

Semantics: [to]I,g is a function i: De → D<<e,t>, <e, t>>. Roughly speaking, for any individual
o and action A, if the function h: De → Dt maps all and only the individuals in De who do
A to truth, then (i(o))(h): De → Dt maps all and only the individuals in De who do A to o
to truth.

One reason why this sort of semantics may not quite work is that there may be two
actions A and A* such that exactly the same individuals in the domain do A as do A*, but
some do A quickly without doing A* quickly or vice versa.

Can we solve this problem by moving from extensions to intensions? For if it is
necessary that exactly the same individuals do A as do A*, it is less clear how anyone
could do A quickly without doing A* quickly or vice versa. But even this might not be
enough. For suppose that there can be a model in which the domain of individuals with
respect to any given world is restricted to the things that do both A and A* in that world.
Within the model, there is no intensional difference between doing A and doing A*, but
there may still be an intensional difference between doing A quickly and doing A*
quickly.

 2

A different objection to the approach is that it does not help us understand the relevant
logical relations, e.g. that (2) entails (1). To derive them, one must assume corresponding
entailments in the metalanguage, e.g. that doing A quickly entails doing A. This is one
standard motivation for switching to an alternative approach that postulates much more
deeply hidden semantic structure.

Event analyses (Reichenbach, Davidson, Parsons, …)

We represent (1) and (2) as follows, where the variable ‘e’ is restricted to particular
events:

(1d) e (Walking(e) & Agent(Mary, e)) ∃

(2d) e (Walking(e) & Agent(Mary, e) & Quick(e)) ∃

This provides a good explanation of why (2) explains (1) but not vice versa. Similarly,
(4) and (5) are represented as:

(4d) e (Walking(e) & Agent(Mary, e) & Quick(e)) & ∃ ∃ e (Talking(e) &

Agent(Mary, e) & Slow(e))

(5d) e (Walking(e) & Agent(Mary, e) & Slow(e)) & ∃ ∃ e (Talking(e) &

Agent(Mary, e) & Quick(e))

This pair seems to capture the appropriate logical relations. The approach can be
extended to more complex cases, such as (3) and (6). For example, (6) might be
represented thus:

(6d) e (Walking(e) & Agent(Mary, e) & Quick(e) & To(e, Oxford)) ∃

Once we have a systematic way of deriving such first-order representations of natural
language sentences, we can apply the type-theoretic apparatus for first-order languages to
obtain formal semantic treatments for the original natural language sentences.
Nevertheless, some questions remain.

How far do we expect semantic analysis to explain entailments?

Consider (7)-(9):

(7) Mary notoriously tortured prawns.

(8) Mary allegedly tortured prawns.

(9) Mary tortured prawns.

 3

(7) entails (9); (8) does not. We do not seem warranted in assuming that this difference is
explained by a covert difference in semantic structure between (7) and (8); it may just be
the result of a difference in lexical semantics between ‘notoriously’ and ‘allegedly’. So
what is so bad about attributing the entailment of (1) by (2) to the lexical semantics of
‘quickly’?

Are events sufficiently fine-grained?

(6) might be true at the same time as (10), with reference to the same past occasion:

(10) Mary travelled slowly to Oxford.

Just as (6) is represented as (6d), (10) will be represented as (10d):

(10d) e (Travelling(e) & Agent(Mary, e) & Slow(e) & To(e, Oxford)) ∃

But on Davidson’s view Mary’s walking quickly to Oxford may be the very same event
as her travelling slowly to Oxford; thus (6d) and (10d) have the same verifying instance.
But how can a single event be both quick and slow? Indeed, with reference to the same
occasion, (11) may be false:

(11) Mary travelled quickly to Oxford.

Now (11) will be represented as (11d):

(11d) e (Travelling(e) & Agent(Mary, e) & Quick(e) & To(e, Oxford)) ∃

But if (6d) is true and the walking is a travelling, how can (11d) be false?

How far can we read metaphysics off semantics and common sense?

(12) If ‘Mary ran’ is true, there are events.
(13) If Mary ran, ‘Mary ran’ is true.
(14) Mary ran.
--
(15) There are events.

Further reading
Donald Davidson, ‘The logical form of action sentences’, in his Essays on Actions and

Events (Oxford: Clarendon Press, 1980).
Donald Davidson, ‘The method of truth in metaphysics’, in his Inquiries into Truth and

Interpretation (Oxford: Clarendon Press, 1984).
Terence Parsons, Events in the Semantics of English: A Study in Subatomic Semantics

(Cambridge, Mass.: MIT Press, 1994).
Mark Platts, Ways of Meaning (London: Routledge & Kegan Paul, 1979), ch. 8.
Hans Reichenbach, Elements of Symbolic Logic (New York: The Free Press, 1947).

 4

Introduction to Semantics

Week 8: Dynamic Semantics / Discourse Representation Theory

(1a) A man is walking. He is tired.

(1b) x (man(x) & walking(x)) tired(x) ∃

(1c) x (man(x) & walking(x) & tired(x)) ∃

(2a) A farmer owns a donkey. He beats it.

(2b) x ∃ y (farmer(x) & owns(x, y) & donkey(y)) beats(x, y) ∃

(2c) x ∃ y (farmer(x) & owns(x, y) & donkey(y) & beats(x, y)) ∃

(3a) If a farmer owns a donkey, he beats it.

(3b) (x ∃ y (farmer(x) & owns(x, y) & donkey(y))) → beats(x, y) ∃

(3c) x∀ y ((farmer(x) & owns(x, y) & donkey(y)) → beats(x, y)) ∀

(1d) [x: man(x), walking(x)] [u: tired(u)]

(1e) [x, u: man(x), walking(x), tired(u)]

(1f) [x, u: u = x, man(x), walking(x), tired(u)]

(1g) [x: man(x), walking(x), tired(x)]

(2d) [x, y: farmer(x), owns(x, y), donkey(y)] [u, v: beats(u, v)]

(2e) [x, y, u, v: farmer(x), owns(x, y), donkey(y), beats(u, v)]

(2f) [x, y, u, v: u = x, v = y, farmer(x), owns(x, y), donkey(y), beats(u, v)]

(2f) [x, y: farmer(x), owns(x, y), donkey(y), beats(x, y)]

 1

DRSs and DRS-conditions

DRS = discourse representation structure

A DRS is a pair <U, C> where U is a set of discourse referents, and C is a set of DRS-
conditions.
NB Discourse referents are abstract representational devices, not the referents in the usual
sense; for example, in (2e) the discourse referent ‘x’ is not a farmer and the discourse
referent ‘y’ is not a donkey. The DRS exists whether or not there really is a farmer and a
donkey.

If P is an n-place predicate in the language and x1, …, xn are discourse referents, then
P(x1, …, xn) is a DRS-condition.
If x and y are discourse referents, then x = y is a DRS-condition.

Semantics for DRSs

A model is a pair <D, I>, where D is a domain of individuals and I is an interpretation
function mapping each atomic n-place predicate in the language to a set of n-tuples of
members of D (and each name to a member of D).

An embedding of a DRS <U, C> in a model <D, I> is a function f such that
domain(f) = U and range(f)⊆ D.

A DRS K is true in a model M iff some embedding of K in M verifies K relative to M.

Henceforth we leave the relativization to M tacit.

We must now explain what it is for an embedding f to verify a DRS-condition.

f verifies P(x1, …, xn) iff <f(x1), …, f(xn)>∈ I(P).

f verifies x = y iff f(x) = f(y).

f verifies a DRS <U, C> iff f verifies every condition in C.

NB Verification here is a purely non-epistemic notion.

 2

Examples

If f is an embedding of (1g), domain(f) = {x};
f verifies (1g) iff f(x)∈ I(man), f(x)∈ I(walking) and f(x)∈ I(tired).
There is such an embedding iff there is a member d of D such that d∈ I(man),
d∈ I(walking) and d∈ I(tired), i.e. iff (1c) is true (some man is walking and tired), i.e. we
recover the desired truth-conditions.

If f is an embedding of (1f), domain(f) = {x, u};
f verifies (1f) iff f(u) = f(x), f(x)∈ I(man), f(x)∈ I(walking) and f(u)∈ I(tired).
There is such an embedding iff (1c) is true, i.e. we recover the desired truth-conditions.

If f is an embedding of (1e), domain(f) = {x, u};
f verifies (1g) iff f(x)∈ I(man), f(x)∈ I(walking) and f(u)∈ I(tired).
There is such an embedding iff some man is walking and something is tired (different
truth-conditions).

If f is an embedding of (2g), domain(f) = {x, y};
f verifies (2g) iff f(x)∈ I(farmer), <f(x), f(y)>∈ I(owns), f(y)∈ I(donkey),
<f(x), f(y)> I(beats). ∈
There is such an embedding iff (2c) is true (some man owns and beats some donkey), i.e.
we recover the desired truth-conditions.
(2f) and (2e) also follow the pattern of (1f) and (1e).

 3

Conditionals

We return to the analysis of (1a), and stipulate:
K and K* are DRSs, then K K* is a DRS-condition. ⇒

If K is a DRS <U, C> and f and g are embeddings, then f[K]g (g extends f to K) iff
f g and domain(g) = domain(f)∪ U. ⊆

An embedding f verifies K K* iff for every embedding g such that f[K]g and g verifies
K there is an embedding h such that g[K*]h and h verifies K*.

⇒

(3d) [: [x, y: farmer(x), owns(x, y), donkey(y)] ⇒ [u, v: beats(u, v)]]

(3e) [: [x, y: farmer(x), owns(x, y), donkey(y)] ⇒ [u, v: u = x, v = y, beats(u, v)]]

(3e) is true iff some embedding of (3e) verifies (3e).
Since (3e) is of the form<{}, C>, its only embedding is {}.
Thus (3e) is true iff {} verifies (3e).
Let K = [x, y: farmer(x), owns(x, y), donkey(y)]

K* = [u, v: u = x, v = y, beats(u, v)]]
{} verifies (3e) iff for every embedding g such that {}[K]g and g verifies K there is an
embedding h such that g[K*]h and h verifies K*.
For any embedding g, {}[K]g iff domain(g) = {x, y}.
For any such g and embedding h, g[K]h iff

h(x) = g(x), h(y) = g(y) and domain(h) = {x, y, u, v}.
Thus (3e) is true iff for every embedding g such that domain(g) = {x, y} and g verifies K
there is an embedding h such that domain(h) = {x, y, u, v}, h(x) = g(x), h(y) = g(y) and h
verifies K*. But h verifies K* iff h(u) = h(x), h(v) = h(y), <h(u), h(v)>∈ I(beats).
For given g, there is an embedding h such that domain(h) = {x, y, u, v}, h(x) = g(x), h(y)
= g(y), h(u) = h(x), h(v) = h(y) and <h(u), h(v)>∈ I(beats) only if <g(x), g(y)>∈ I(beats).
Conversely, if <g(x), g(y)> I(beats) then there is an embedding h such that domain(h) =
{x, y, u, v}, h(x) = g(x), h(y) = g(y) and h(u) = h(x), h(v) = h(y), <h(u), h(v)>∈ I(beats),
since we can stipulate that h(u) = h(x) = g(x) and h(v) = h(y) = g(y).

∈

Thus (3e) is true iff for every embedding g such that domain(g) = {x, y} and g verifies K,
<g(x), g(y)>∈ I(beats).
But g verifies K iff g(x)∈ I(farmer), <g(x), g(y)>∈ I(owns), g(y)∈ I(donkey).
Hence (3e) is true iff for every embedding g, if domain(g) = {x, y}, g(x) I(farmer),
<g(x), g(y)>∈ I(owns) and g(y) I(donkey), then <g(x), g(y)>

∈
∈ ∈ I(beats).

Hence (3e) is true iff for all members c and d of D,
if c I(farmer), <c, d>∈ I(owns), d∈ ∈ I(donkey), then <c, d>∈ I(beats),
i.e. iff (3c) is true (for every farmer and every donkey, if the former owns the latter then
the former beats the latter), i.e. the desired truth-conditions.

This also shows that (3e) is equivalent to the simpler:

(3f) [: [x, y: farmer(x), owns(x, y), donkey(y)] ⇒ [: beats(x, y)]]

 4

The semantics of conditional DRS-conditions is dynamic in the sense that the verification
of the consequent (when it occurs) ‘builds on’ the verification of the antecedent rather
than starting from the same point as the verification of the antecedent started from.

Negation

In what follows, names will be treated as discourse referents that every embedding f is
required to map to their assigned values in the model, so that f(Pedro) = I(Pedro).
Thus (4a) is represented as (4b):

(4a) Pedro owns a donkey.

(4b) [Pedro, y: owns(Pedro, y), donkey(y)]

We cannot represent (5a) as (5b):

(5a) Pedro does not own a donkey.

(5b) [Pedro, y: not-owns(Pedro, y), donkey(y)]

For (5b) is true provided that there is some donkey d that Pedro does not own, since it is
verified by an embedding f such that f(y) = d. By contrast, (5a) is true only if no donkey
is owned by Pedro. Rather, we apply negation to DRSs themselves:

If K is a DRS, ¬K is a DRS-condition.

We can now represent (5a) as:

(5c) [Pedro: ¬[y: owns(Pedro, y), donkey(y)]]

f verifies ¬K iff no embedding g such that f[K]g verifies K.

f is an embedding of (5c) that verifies (5c) iff domain(f) = {Pedro}, f(Pedro) = I(Pedro)
and f verifies ¬[y: owns(Pedro, y), donkey(y)], i.e. no embedding g such that domain(g)
= {Pedro, y} and g(Pedro) = f(Pedro) verifies [y: owns(Pedro, y), donkey(y)].
But g verifies [y: owns(Pedro, y), donkey(y)] iff <g(Pedro), g(y)>∈ I(owns),
g(y)∈ I(donkey). Since there is such an embedding g iff for some d∈D,
<I(Pedro), d>∈ I(owns) and d I(donkey), (5c) has the desired truth-conditions. ∈

NB With both negative and conditional DRS conditions, we must ensure that discourse
referents cannot be introduced more than once in the same DRS.

 5

Accessibility

Why is (7a) bad in a way in which (6a) is not, when ‘it’ is anaphoric on ‘a donkey’?

(6a) Pedro owns a donkey. It is sad.

(7a)* Pedro doesn’t own a donkey. It is sad.

After initial merging, they are represented as follows:

(6b) [Pedro, y, u: owns(Pedro, y), donkey(y), sad(u)]

(7b) [Pedro, u: ¬[y: owns(Pedro, y), donkey(y)], sad(u)]

When we (attempt to) add the anaphoric links, the results are:

(6c) [Pedro, y, u: u = y, owns(Pedro, y), donkey(y), sad(u)]

(7c)* [Pedro, u: u = y, ¬[y: owns(Pedro, y), donkey(y)], sad(u)]

The difference must be that y in (6c) is accessible to u in some sense in which it is not in
(7c). This idea can be made more rigorous as follows.

We define accessibility as:
the smallest reflexive transitive relation between DRSs such that
a. if K contains K* K** then K is accessible to K* and K* is accessible to K** ⇒
b. if K contains ¬K* then K is accessible to K*
(more clauses will need to be added for a language with more operations for making DRS
conditions from DRSs).
If <U, C> and <U*, C*> are DRSs, and x and x* are discourse referents such that x∈U
and x*∈U*, then x is accessible to x* iff <U, C> is accessible to <U*, C*>.

Now y is accessible to u in (6c) but not in (7c) (and the semantics does not make the
value of ‘y’ outside the negative condition in (7c) covary with its value inside).
Thus (7c) but not (6c) violates the Accessibility Constraint:

A discourse referent that represents an anaphoric expression must be equated with a
discourse referent accessible to it.

Further reading
L.T.F Gamut, Logic, Language, and Meaning, Volume 2: Intensional Logic and Logical

Grammar (Chicago: University of Chicago Press, 1991), pp. 264-97 (with
exercises).

Bart Geurts, ‘Piggyback anaphora: accessibility, binding, and bridging’,
http://www.ru.nl/ncs/bart/papers/piggyback.pdf

Hans Kamp and Uwe Reyle, From Discourse to Logic (Dordrecht: Kluwer, 1993).

 6

http://www.ru.nl/ncs/bart/papers/piggyback.pdf

	handouts cover
	Semantics Handout (week 1, 2, and 4)
	Semantics5
	Semantics6
	Semantics7
	Semantics8

